On syntactic monoids of biunitary submonoids determined by homomorphisms from free semigroups onto completely simple semigroups
نویسنده
چکیده
We deal with the maximal bifix code construction which is a natural generalization of a group code construction. For a surjective morphism from a free monoidA∗ onto a completely simple semigroup with an adjoined identityM(G; I, J ; )1 and a submonoid S of M(G; I, J ; )1, under certain conditions, the base of a submonoid −1(S) is a maximal bifix code X. We investigate the relationships between the surjective morphism and the syntactic monoid of the monoid generated by X. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
The Structure of Endomorphism monoids of Strong semilattices of left simple semigroups
Endomorphism monoids have long been of interest in universal algebra and also in the study of particular classes of algebraic structures. For any algebra, the set of endomorphisms is closed under composition and forms a monoid (that is, a semigroup with identity). The endomorphism monoid is an interesting structure from a given algebra. In this thesis we study the structure and properties of th...
متن کاملPrimitive representations of the polycyclic monoids and branching function systems
We generalise the group theoretic notion of a primitive permutation representation to inverse monoids and so obtain a notion of a primitive representation by partial permutations. Such representations are shown to be determined by what we call essentially maximal proper closed inverse submonoids. Such submonoids in the case of the polycyclic inverse monoids (also known as Cuntz inverse semigrou...
متن کاملOn varieties of semigroups and unary algebras∗†
The elementary result of Variety theory is Eilenberg’s Variety theorem which was motivated by characterizations of several families of string languages by syntactic monoids or semigroups, such as Schützenberger’s theorem connecting star-free languages and aperiodic monoids. Eilenberg’s theorem has been extended in various directions. For example, Thérien involved varieties of congruences on fre...
متن کاملOn the Brandt Λ-extensions of Monoids with Zero
We study algebraic properties of the Brandt λ-extensions of monoids with zero and non-trivial homomorphisms between the Brandt λ-extensions of monoids with zero. We introduce finite, compact topological Brandt λextensions of topological semigroups and countably compact topological Brandt λ-extensions of topological inverse semigroups in the class of topological inverse semigroups and establish ...
متن کاملExpansions of Inverse Semigroups
We construct the freest idempotent-pure expansion of an inverse semigroup, generalizing an expansion of Margolis and Meakin for the group case. We also generalize the Birget-Rhodes prefix expansion to inverse semigroups with an application to partial actions of inverse semigroups. In the process of generalizing the latter expansion, we are led to a new class of idempotent-pure homomorphisms whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 352 شماره
صفحات -
تاریخ انتشار 2006